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Abstract

A method of automating the generation of
a time-dependent, Navier-Stokes, static stabil-
ity and control (S&C) database for the Harrier
aircraft in ground e�ect is outlined. Reusable,
lightweight components are described which al-
low di�erent facets of the CFD simulation pro-
cess to utilize a consistent interface to a re-
mote database. These components also allow
changes and customizations to easily be facili-
tated into the solution process to enhance per-
formance, without relying upon third-party sup-
port. An analysis of the multi-level parallel solver
OVERFLOW-MLP is presented, and the results
indicate that it is feasible to utilize large num-
bers of processors (� 50) even with a grid system
with a relatively small number of cells (� 106).
Using the tools described in this paper, improve-
ments in both wallclock and computational time
to generate a database of time-dependent solu-
tions have been observed.

1 Introduction

The Harrier is a V/STOL aircraft that can
take-o� and land vertically, or utilize very short
runways, by directing its four exhaust nozzles to-
wards the ground. Transition to forward ight
is achieved by rotating these nozzles into a hor-
izontal position. Powered-lift vehicles such as
the Harrier have certain advantages over conven-
tional aircraft. Their V/STOL capabilities al-
low for safer carrier operations, smaller carrier
size, and allow for quick reaction time for troop
support. They also are not dependent on vul-
nerable land-based runways. The AV-8A was the
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Figure 1: Harrier AV-8B in hover (Boeing).

�rst service-version of the Harrier, and the AV-8B
was a later redesign for improved payload capac-
ity and range (cf. Siuru [1]). The current work
utilizes a version of the AV-8B design. The suc-
cess and unique capabilities of the Harrier has
prompted the design of a powered-lift version of
the Joint Strike Fighter (JSF).
The ow�eld for the Harrier near the ground

during very low-speed or hover ight operations
is very complex and time-dependent (cf. Fig.1).
Warm air from the fan is exhausted from the
front nozzles, while a hot air/fuel mixture from
the engine is exhausted from the rear nozzles.
These jets strike the ground and move out ra-
dially forming a ground jet-ow. The ambi-
ent freestream, due to low-speed forward ight
or headwind during hover, opposes the jet-ow.
This interaction can cause the ow to separate
and form a ground vortex which can be unsteady,
changing size and position at low frequency. The
multiple jets also interact with each other near
the ground and form an upwash, or jet fountain,
which strikes the underside of the fuselage. If
the aircraft is suÆciently close to the ground,
the inlet can ingest ground debris and hot gasses
from the fountain and ground vortex. This Hot
Gas Ingestion (HGI) can cause a sudden loss of
thrust (lift), impairing vehicle safety. The high-
speed jet ow along the ground can also entrain
the ambient ow, resulting in a low pressure re-
gion underneath the vehicle, leading to what is
referred to as the \suckdown e�ect".
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A number of numerical and experimental in-
vestigations have been carried out to better un-
derstand the complex time-dependent ows as-
sociated with powered-lift vehicles. One ap-
proach has been to simplify the geometry to
study the basic ow physics. Van Dalsem et.al.
[2] performed time-dependent Reynolds-averaged
Navier-Stokes (RANS) simulation using a delta
wing with two aft mounted thrust-reverser jets
in close proximity to the ground plane. These
computations captured the loss of lift near the
ground associated with the suckdown e�ect, and
the small drop-o� of lift at higher locations asso-
ciated with the conventional ground cushion ef-
fect. Preliminary results were also presented for a
Harrier YAV-8B forebody and inlet. Chawla and
van Dalsem [3] carried out time-accurate laminar
ow simulations using the same delta wing geom-
etry of [2]. Static (�xed geometry) ow simula-
tions were computed at varying heights above the
ground plane, as well as a single maneuver sim-
ulation with the delta wing descending towards
the ground plane. The static cases showed the
expected trends between the lift coeÆcient and
height, including the suckdown and cushion ef-
fects. The ows were found to be unsteady, with
Strouhal numbers ranging from 0.015 to 0.03, and
certain approximations had to be made in order
to reduce the long compute times.
There have been several RANS computations

using simpli�ed Harrier geometries. Gea et.al. [4]
and Mysko et al. [5] both computed steady tran-
sonic ow (out of ground e�ect) about Harrier
wing/fuselage con�gurations. Smith et al. [6] pre-
sented a time-dependent RANS solution about
a simpli�ed YAV-8B Harrier in ground e�ect.
To date, this represents the only RANS solution
about a fairly complete Harrier aircraft in ground
e�ect. In order to o�set the very long compute
times, certain simpli�cations were made to the
time-accurate approach. The current research
expands on the work of Smith et al. by re�n-
ing the geometry used in [6], calculating time-
dependent solutions, and using these computed
simulations to build a computational database.
The purpose of this paper is to describe a pro-

cess that has enabled a static stability and con-
trol (S&C) database for the Harrier aircraft in
ground e�ect to be computed. The focus of the
current work is on the solution process itself, as
opposed to the results of the simulations. A com-
panion paper by Chaderjian et al. [7], contains re-
sults obtained using the process outlined in this
work, including an analysis of 45 time-dependent
RANS simulations at 5 di�erent heights and 9
angles of attack. In order to compute a S&C
database using time-dependent CFD simulations,
it's necessary to automate as much of the pro-
cess as possible, from mesh generation to post
processing. This paper describes a strategy that
allows this automation, as well as still provid-
ing the ability to easily extend and customize

the process without relying upon cumbersome
software or third-party support. Another focus
of the current work is the parallel eÆciency of
the ow simulation process, as an eÆcient ow
solver is necessary in order to compute a time-
dependent low frequency ow�eld. The eÆciency
of the OVERFLOW-MLP solver, and it's interac-
tion with the runtime environment are examined.
The �rst section describes the heterogeneous

computing model that was followed, and the
script system that was built to generate a time-
dependent database. Next, the details of the
computational mesh are presented, and the au-
tomatic generation of con�gurations for the dif-
ferent heights and angles of attack required to �ll
the S&C database is discussed. Lastly, the eÆ-
ciency of the ow solver and the embarrassingly
parallel solution strategy are described, followed
by a description of the post-processing tools.

2 Remote Interface

Computing an S&C database involves perform-
ing a parametric study of the forces and mo-
ments on the aircraft. In this work, the parame-
ters of interest were chosen to be the height of
the vehicle above the ground plane, the angle
of attack, and the freestream Mach number (h,
�, and M1). Working with such a parameter
space, it's desirable to automate as much of the
solution process as possible - from mesh genera-
tion to post-processing of the computed results.
This automation speeds the overall process and
minimizes human errors. To this end, a modu-
lar script system was developed that allowed dif-
ferent facets of the solution process to utilize a
consistent interface and set of tools. The script
system was built from the \ground up", rather
than from the \top down", i.e. by building the
lowest level components �rst and then building
application scripts on top of the low level com-
ponents.
This script system was implemented using the

Perl language. Perl was chosen because it is an
object-oriented language which encourages the
re-use of components, and it's a powerful inter-
preted language which can ful�ll all of the needs
of the script system without resorting to creating
specialized compiled binaries, or mixing scripting
languages. One of the requirements on the script
system for the current work was to manage a het-
erogeneous, specialized computing environment.
In this environment, each computer (or group of
computers) has a speci�c dedicated task - one
class of machine is dedicated to archival storage,
one machine is dedicated to high-performance
computing, one machine is dedicated to post-
processing and ow visualization (cf. Fig. 2).
This type of environment is at least conceptually
similar to grid computing environments, such as
NASA's Information Power Grid (IPG) (cf. [8]),
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Figure 2: Schematic of computing environment.
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Figure 3: Schematic of script system.

as for any single simulation there is only one lo-
cation where the data is stored and one location
where the computation occurs (in most cases).
The backbone of the script system is an in-

terface to an S&C database stored on a remote
archival storage system. This type of storage
paradigm assumes that the remote storage is the
only system in the heterogeneous environment
that can maintain persistent data. All interac-
tion with the database utilizes this same interface
(cf. Fig. 3). The interface to the remote database
is implemented using a Perl module (object). In
an object-oriented fashion, the interface is con-
sidered static and is the means by which clients
(the application scripts in this instance) inter-
act with the database. The actual implementa-
tion details behind the interface are hidden from
clients and hence can be changed at any time,
provided that the interface remains static. This
allows the design to evolve with the needs and
abilities of the rest of the system. For exam-
ple, currently the database is implemented sim-
ply using a UNIX �le and directory structure.
If this was replaced with a more sophisticated
database software tool, none of the application
scripts would need to be changed. The appli-
cation scripts are not even aware that the data
is stored remotely. The interface currently sup-
ports several low-level methods, such as \copy-
to", \copy-from", etc. from which higher-level
tools can be developed. In practice, an applica-
tion script would issue a command and provide
the current parameter values (M1, �, h), and the
Perl implementation stores the �le in the proper
location within the database. All �les are stored
in the database as read-only to prevent multiple
users or runaway processes from overwriting en-
tries in the database.
Using the remote database module, scripts

were developed to generate the overset grid sys-
tem, run the ow solver, and post-process the
results through a GUI (written using Perl-Tk).
In this manner, not only is there considerable
software re-use among the various scripts, but
an entirely new database can be accessed simply
by creating a new speci�c instance of the remote
database module, i.e. the higher-level scripts do
not need to change to compute a new database.
The complete script system contains about 1500
lines of Perl code, of which about 50% is ded-
icated to the GUI. The script system designed
to generate the overset grid system is outlined
in the next section, the scripts which run the
ow solver are briey described in Sec. 4, and
the post-processing tools are discussed in Sec. 5.

3 Computational Mesh

Numerical simulation of the Harrier in ground
e�ect combines the complex geometry of a full-
aircraft con�guration, and the complex physics
of a jet in crossow impinging on a ground
plane. In order to accurately simulate this type
of ow�eld, Navier-Stokes simulations are re-
quired to resolve the viscous jet impingement
on the ground plane, the interaction of the jet
and ground vortex \fountain" with the aircraft,
as well as the features of the jets in crossow
themselves (cf. Fig. 1). An overset grid strat-
egy (cf. [9, 10]) was chosen due to the complex
geometry and complex physics encountered. Us-
ing overset grids allows di�erent regions of the
ow�eld, which require di�erent levels of physi-
cal modeling, to be easily handled, and the rele-
vant features of the geometry can be easily mod-
eled. First an overview of the computational ge-
ometry and overset grid system is provided, then
the details of the automation process required to
generate separate grid systems for each aircraft
con�guration is presented.

3.1 Overset Grid System

The initial de�nition of the Harrier YAV{8B
geometry was obtained from the work of Smith et
al. [6]. The de�nition used in [6] did not include
several features of the aircraft, and these were
added from the original \lofting-line" data sup-
plied by Boeing (at the time the McDonnell Dou-
glas Aircraft Company). Figure 4 shows the com-
putational geometry used in the current study.
Most of the major components of the aircraft are
modeled, including the wing with leading-edge
root extension (LERX), empennage, engine inlet
region, and the two engine exhaust nozzles. The
engine exhaust nozzles are scheduled 81 degrees
from the aft position, and the engine thrust rat-
ing used for all calculations was \short-lift wet",
again following [6], where the nozzle exit condi-
tions were determined from an engine-deck code.
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Figure 4: Computational geometry for Harrier
YAV{8B

Figure 5: Harrier overset surface mesh de�nition

The positive circulation aps are also modeled in
their fully-deected position. Due to time con-
straints, it was not possible to model the fuse-
lage gun pod/lift-improvement devices (LIDS).
Siuru [1] contains a discussion of the development
and purpose of these lift-augmentation devices
for the Harrier.
Viscous body-conforming grids were generated

about the relevant features of the Harrier geome-
try, and the overlapping surfaces are shown in
Fig. 5. The height of the �rst cell above the
solid surface was speci�ed such that y+ � 5:0 in
each zone, which was found to be suÆcient to re-
solve the viscous stresses on the surface during a
takeo� or landing scenario. The Reynolds num-
ber is 12 million, based on the aircraft length.
Currently sideslip in not considered, so all of
the computational meshes take advantage of a
lateral symmetry plane on the centerline of the
body. An inviscid Cartesian grid, here called the
\near-body Cartesian box", was created to sur-
round the viscous grids with little overlap, and
portions of this Cartesian grid which were inte-
rior to the solid surface of the aircraft were re-
moved using the overset hole-cutting procedure
(cf. Fig. 5). This provided a region surrounding
the aircraft which could be placed at any height
and orientation relative to a ground plane, with-
out a�ecting any of the intergrid connectivity be-
tween the viscous zones. In other words, the vis-

cous zones and near-body Cartesian box could be
processed through the overset connectivity code
(Pegasus 4.1 [11] was used for the current work)
once, and then utilized for every con�guration
without any changes. All of the surface and vol-
ume meshes were created using the OVERGRID
tool for overset grids developed by Chan [12].
The viscous body-conforming grids, along with
the near-body Cartesian box comprise 45 zones
and 2.4 million grid points.

3.2 Process Automation

Simulating the Harrier in ground e�ect re-
quires proper treatment of the aircraft/ground
plane interaction, which varies from the usual
treatment of an aircraft in ight. As a �rst ap-
proximation, it's been assumed that the param-
eters which a�ect a vehicle in ground e�ect are
the height above the ground plane (h), the angle
of attack (�), and the freestream Mach number
(M1). Fig. 6 shows the reference frame trans-
formations that can be applied to an aircraft in
ground e�ect. Figs. 6b and c would be suitable
for a numerical simulation using a �xed grid sys-
tem, as is used in the current work. Reference
frame b) was chosen for this work, so that the
ow visualization could take place in a natural
frame of reference.
The viscous body-conforming region was com-

bined with the automated script system devel-
oped by Rogers et al. for the High Wing Trans-
port [13], in order to develop a system which
could automatically generate the complete sys-
tem for the aircraft and ground plane in combi-
nation. The script system allowed the processing
to be performed in two steps; �rst the aircraft
was placed at the desired height and orientation
and the viscous intergrid connectivity was estab-
lished, then the ground plane and far�eld grids
were placed around the aircraft, and the complete
connectivity was determined. An example com-
plete grid system is shown in Fig. 7. The jet ex-
haust region was modeled using viscous Cartesian
zones which are generated speci�cally for each
height and angle of attack. The viscous ground
plane is broken into three regions to allow higher
resolution directly under the aircraft where the
jet impingement creates large gradients. The �-
nal grid system consists of 52 zones, and 3.6 mil-
lion grid points for the con�guration with the
aircraft at 30 feet above the ground plane. The
number of grid points changes with height, due
to the generation of speci�c grids for the jet re-
gion at each height, as will be discussed below.

In order to avoid generating �eld grids speci�-
cally for each con�guration, a general set of �eld
grids were created and an overset hole-cutting
procedure was used to eliminate portions of the
grids which weren't necessary, depending upon
the aircraft height. For example, the inviscid
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Figure 6: Aircraft frame of reference transformations including ground plane
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Figure 7: Viscous ground plane and inviscid
outer �eld zones

grid labeled \B" in Fig. 7 actually extends above
the aircraft, however that portion is removed by
the the grid labeled \A" which surrounds the air-
craft box. Similarly, depending upon the height
and angle of attack, grid A and the jet grids may
extend below the viscous ground plane, so a cut-
ting plane is established to remove them if neces-
sary. In this manner, some points aren't utilized
due to the hole cutting procedure, but there is
no need to generate separate �eld grids for each
con�guration. The exception to this strategy is
the viscous zones which model the jet convection
to the ground plane. These zones are computed
using a complete Navier-Stokes algorithm, as op-
posed to the thin-layer Navier-Stokes approxima-
tion which is used for the body-conforming vis-
cous zones. Hence these jet grids are both dense
and expensive to compute. Instead of removing
portions of the jet grids using an overset hole-
cutting procedure, which would lead to expen-
sive computations essentially being thrown away
due to the iblank logic, these grids were gener-
ated speci�cally for each height and then rotated

into position relative to the aircraft based on the
angle of attack.
The wallclock time required to generate a sin-

gle overset grid system, including storing the �les
on a remote database, was approximately 10 min-
utes. The processing system was a 2-CPU desk-
top workstation, and Pegasus 4.1 [11] was used
as the overset grid processing software.
An alternative to pre-processing all of the mesh

generation and overset grid connectivity infor-
mation is to simply store some mesh generation
\meta-information", such as the input �les, sur-
faces, etc., and then generate the meshes and
connectivity \on-the-y". If we assume that a
distributed computing environment (i.e. coast-
coast �le transfers) can sustain a throughput of
1 Mb/sec, then to transfer the 100 Mb mesh
for the current problem would require approx-
imately 100 sec. The volume mesh generation
software generates about 100k cells/sec, and the
mesh generation can be run in parallel since each
overset grid is independent, so clearly generating
the mesh is preferred to transfer. The overset
grid connectivity data typically is about 25% the
size of the mesh �le, and hence would require
about 25 sec to transfer. Domain connectivity
can currently be performed in parallel, using Pe-
gasus 5 [14] or Meakin's DCF package [15], and
would require about 30 sec. - 1 min. to pro-
cess the current mesh. These numbers do scale
approximately linearly with problem size. Note
that this discussion does not even include any
data migration time within a mass storage sys-
tem, or parallel process ineÆciencies incurred by
the serial transfers. This indicates that for a dis-
tributed computing environment, generating the
mesh on-the-y as opposed to a priori mesh gen-
eration is an attractive paradigm.

3.3 Unsteady Flow Features

The current work does not attempt to pro-
vide a \best" single solution for the Harrier in
ground e�ect, rather, the emphasis was to uti-
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Figure 8: Snapshot of unsteady streaklines (col-
ored by temperature) emanating from jet ex-
hausts (h = 15 ft., � = 6:0Æ, M1 = 0:05).

lize the best grid system possible to calculate a
time-dependent S&C database given the current
computational resources. As such, the current
grid system is very much an engineering com-
promise. A snapshot of the unsteady streak-
lines in the jet/ground plane ow�eld is shown
in Fig. 8 for a height of 15 ft. and � = 6Æ (com-
pare with Fig. 1). The streaklines are colored by
temperature, with red being hot and blue cold.
The jet ow impinges upon the ground plane,
and then spreads in all directions. The oncom-
ing freestream ow causes the forward jet ground
ow to separate and roll up into a large vortex
under the aircraft. This vortex changes size and
position with time, similar to the \puÆng" be-
havior cited by Cimbala et al. for an isolated
jet in crossow [16]. The time-dependent aero-
dynamic lift force on the aircraft is shown in
Fig. 9. After an initial transient, an unsteady
oscillation is evident, which corresponds to the
change in ground vortex strength and position.
The frequency of the lift oscillation is 2.22 Hz
(StDjet

= 0:04), which is close to the unsteady
oscillation measured for an isolated jet in [16],
and also that computed for a delta wing in hover
by Chawla and van Dalsem [3]. See the compan-
ion paper [7] for more details on the unsteady
ow�eld, and a discussion of the full unsteady
database.

4 Simulation Process

4.1 OVERFLOW-MLP Solver

One of the goals of the current project is to
utilize large-scale parallel computers, such as the
NASA Ames 1024-processor R13000 SGI Ori-
gin 3000 (O3K) machine, to compute the S&C
database. The SGI O3K is a shared-memory,
multi-processor (SMP) machine. A version of the
OVERFLOW solver [17], called OVERFLOW-
MLP (for \multi-level parallelism"), has been de-
veloped by Taft [18] for use on these types of ar-
chitectures. The OVERFLOW-MLP solver uti-
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Figure 9: Time variation of lift history (h = 15
ft., � = 6:0Æ, M1 = 0:05)

lizes two levels of parallelism - domain decom-
position, and procedural (or loop-level) paral-
lelism. The domain decomposition scheme is im-
plemented on top of the \production" version of
the parallel OVERFLOW solver.
As the OVERFLOW-MLP solver uses two

methods of parallelization, there are combina-
tions of parameters that can be varied to a�ect
performance of the code. The main parameters
are the number of processors per domain (which
can vary from one domain to the next), the num-
ber of domains, and the total number of proces-
sors utilized. As a large number of cases are
required to �ll the S&C database, some exper-
imentation was performed to determine an op-
timum con�guration of the OVERFLOW-MLP
control parameters for the current problem con-
�guration.
Using the OVERFLOW-MLP code essentially

as a pure domain-decomposition scheme (i.e. us-
ing 1 CPU per domain), the parallel eÆciency
was 99% when using 16 CPUs for the cur-
rent Harrier application. This was suitable for
computing a database using the embarrassingly-
parallel approach to be discussed in the next sec-
tion, however it is still desirable to utilize large
numbers of CPUs in order to reduce debugging
time, explore database-�ll methods other than
the brute force approach, and for future work
simulating vehicle maneuvers. Figure 10 shows
the parallel speedup when computing the Harrier
con�guration using a variety of domain sizes and
number of CPUs. It's seen that while some con-
�gurations can provide acceptable performance
using up to 48 CPUs, none of the options per-
forms well using more processors.
There are two contributing factors to the poor

parallel eÆciency with large numbers of proces-
sors; the scalability of the underlying procedu-
ral parallelism in the production OVERFLOW
code, the low number of degrees of freedom for
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Figure 10: Parallel speedup for the
OVERFLOW-MLP code computing the Harrier
con�guration (SGI R12000 O2K).

the load balance algorithm. For a multi-level
parallelism scheme, such as the OVERFLOW-
MLP code, the total parallel eÆciency (�T ) can
be (approximately) viewed as a product of the
domain-based eÆciency (�D), and the procedu-
ral eÆciency (�P )

�T � �D � �P =
wt1

wtN �N
(1)

where wtN is the walltime using N CPUs. Since
�T and �D can be measured directly, the approxi-
mate procedural eÆciency can be calculated. Re-
ducing the data in Fig. 10 using Eqn. 1, leads to a
procedural eÆciency curve for the underlying al-
gorithm for the Harrier application (cf. Fig. 11).
Note that the average number of CPUs per do-
main is utilized as the abscissa. The procedural
eÆciency for the current problem is also mea-
sured directly by performing computations with a
single domain. Note that this measurement only
provides an approximate scaling, as the current
problem requires between 4 and 8 CPU's of mem-
ory depending upon the machine being utilized.
In Fig. 11, all of the computations are collapsing
to the same curve, to within the variability of the
timing data. Further, the procedural eÆciency
reduces quickly, so that with 4 CPUs/domain
the procedural eÆciency has already dropped to
about 80% for this application. Note that this
curve is only relevant to the current application.
It's believed that for applications which primar-
ily use the more \cache-friendly" thin-layer algo-
rithm the scalability would improve.
As the number of domains is increased, the

number of CPU's per domain decreases, while the
load balance remains over 80%. This accounts
for the improvement seen in Fig. 10 increasing
from 8 to 28 domains. However as the number
of domains increases it becomes more diÆcult to
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Figure 11: Procedural eÆciency for the
OVERFLOW-MLP code computing the Harrier
con�guration (SGI R12000 O2K and R13000
O3K).

achieve an eÆcient load balance, due to the lim-
ited number of degrees of freedom. The overall
performance of the code again degrades, as seen
with the speedup for 36 domains in Fig. 10. It is
possible to achieve a good parallel eÆciency for
the current problem by trial-and-error. Following
the above analysis, Pandya et al [19] manually
split many of the larger grids, and by adjusting
the load-balance weights were able to achieve ac-
ceptable eÆciency using 112 processors and 32
domains with 67 overset grids. This is obviously
not a general solution however.

Unstructured viscous solvers can achieve lin-
ear scalability up to 128 processors on problems
of this size (cf. Mavriplis [20] and Anderson et
al. [21]), in part because the number of degrees
of freedom for the load balance algorithm is the
total number of cells in an unstructured code,
and in part because the underlying algorithms
are performing more computational work at each
iteration than the scalar, approximately-factored
scheme utilized in the current work. In order to
see similar performance with the OVERFLOW-
MLP code for the current application, a means
of providing more degrees of freedom to the load
balance scheme is needed, perhaps by an auto-
mated adaptive blocking scheme for the inviscid
outer ow such as used by Meakin [22]. Another
approach would be to improve the scalability of
the underlying procedural OVERFLOW code, or
possibly extending the numerical scheme to take
advantage of the large amount of memory that
is currently unused when computing with large
numbers of CPUs on large SMP machines (with-
out sacri�cing performance).
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4.2 Script System

In order to compute an S&C database, it's de-
sirable to take advantage of the \embarrassingly
parallel" nature of the problem. In other words,
since each con�guration is an identical, indepen-
dent problem with varying inputs, it's possible to
compute several database parameters together in
parallel and hence reduce the total wallclock time
required to compute the entire database. For the
Harrier application, the parameters of interest
are height, angle of attack, and Mach number
(cf. Sec. 3).
Two scripts were written to control the ow

solver; the �rst runs the ow solver for a single
set of parameters, while the second runs multiple
concurrent sessions of the ow solver, each with a
di�erent set of parameters. Concurrent sessions
(as opposed to multiple independent cases) were
utilized in order to reduce the amount of job mon-
itoring that needed to be performed. The main
parameter a�ecting run time was found to be the
height about the ground plane; lower heights re-
quired less iterations, while more were required
for higher heights. An angle-of-attack sweep at
a given height could be run concurrently, so that
instead of monitoring hundreds of jobs individu-
ally, only a handful of AOA sweeps needed to be
monitored�. The script for running a single job
(a job is a particular set of parameters, with a
speci�c input �le, ow solver, etc.) manages re-
trieving the latest ow solution from the remote
database, setting up the input �les, running the
ow solver, checking if the ow solver executed
properly, and then storing the new ow solution
to the remote database. Since the ow�eld in the
current work is unsteady, this process must be it-
erated many times in succession. The locations
of the various �les (both remotely and on the
local high-performance computing machine) and
the ow solver inputs, are all determined based
upon the parameters within the database matrix.
The script which runs multiple concurrent jobs

leverages the work of the script which runs a sin-
gle job. The multiple job script sets up a ma-
trix of jobs to run, and then \launches" (literally
forks()) an instance of the single job script for
each set of parameters (cf. Fig. 12). The multiple
job script then waits for each of these instances
to �nish, and when one does another job can be
launched. When all of the jobs have �nished the
script exits.
When working on an SMP architecture it can

be diÆcult to run multiple instances of the same
executable concurrently on a dedicated set of
processors without the multiple instances inter-
fering with each other and greatly reducing the

�This approach is only practical on large machines such
as the SGI Origins used in the current work. For a dis-
tributed computing platform, independent jobs would be
required, and a more sophisticated job monitoring mech-
anism would be needed in the simulation process.

Figure 12: Schematic of running multiple concur-
rent jobs

eÆciency of the parallel ow solver. The ini-
tial database computations (performed in March-
April, 1999) had no way to account for proces-
sor interference, and hence the \embarrassingly-
parallel eÆciency" was not 100%. Rather, the
average wallclock time required for a single
database point when multiple concurrent com-
putations were performed was roughly 1.3 times
that required for a single computation in isola-
tion.

On the NASA Ames Origin machines running
the portable batch system (PBS), a \nodemask"
variable is supplied to each batch job. This node-
mask variable speci�es the subset of the machines
processors which the current batch session can
access. The recent versions of the OVERFLOW-
MLP code use the nodemask variable to execute
a pin-to-node strategy, whereby the domain de-
composition assigns domains to speci�c proces-
sors for the duration of the ow solver execu-
tion, rather than allowing the OS to dynamically
balance the CPU usage. When running mul-
tiple concurrent versions of the OVERFLOW-
MLP executable, it's thus necessary to apply an-
other mask to the nodemask variable that PBS
provides - a so-called \job mask" which speci-
�es the processors which each speci�c job should
utilize. In other words, if 16 processors are sup-
plied by PBS, and it's desired to run 4 concur-
rent jobs, the job mask would mask portions of
the original 16 processors so that 4 distinct pro-
cessors are available to each job. This was done
by creating a Perl module which stores the origi-
nal PBS nodemask variable, and then portions it
out to each job that is launched so that no two
jobs can access the same processor (cf. Fig. 12).
In this manner, concurrent versions of the same
executable can be run without processor interfer-
ence, and without requiring modi�cation of the
ow solver code. Using the job nodemask and the
pin-to-node strategy, the embarrassingly-parallel
eÆciency when running multiple concurrent cases
was indistinguishable from the theoretical maxi-
mum of 100%, however at the cost of a tight cou-
pling between the ow solver and the run-time
environment.
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5 Post Processing

As with the mesh generation and ow simu-
lation processes, when analyzing hundreds (or
more) of CFD simulations it's desirable to au-
tomate much of the post-processing analysis.
This automation can also be used to \mine" the
database for interesting or critical points, as well
as obtain general structures. As was discussed
in Sec. 2, a GUI tool was built upon the re-
mote database interface using Perl-Tk and uti-
lized to perform post-processing analysis of the
S&C database.
The GUI tool, referred to as \DBview", has

two main modes of operation; interactive and
batch processing. In interactive mode DBview is
itself in some sense simply a layer between the
remote database and analysis application soft-
ware residing on the engineers desktop machine
(cf. Fig. 3). For example, DBview does not
provide any graphical plotting capability, rather
it retrieves the relevant data from the remote
database and calls a third-party graphical appli-
cation (Grace) to display and analyze the results.
Similarly for ow�eld visualization (FieldView)
and frequency analysis (Matlab). In batch pro-
cessing mode, a number of database entries can
be selected to have certain tasks performed (with
the results to be stored in the remote database),
and the DBview tool again simply manages the
data movement and choosing the proper appli-
cation to run. With this approach, the GUI
tool is both open-ended, since new third-party
applications can simply be added as necessary,
and lightweight, as the GUI simply must manage
user input and data movement without needing
to perform complicated or specialized analysis
tasks. In other words, by leveraging these third-
party applications, the post-processing tool can
then be as powerful as an individual tailored tool,
without having to support those features directly.
The DBview \front-end" is shown in Fig. 13.

Access tabs for choosing the desired database are
in the upper left of the interface. In this ex-
ample, the two possible databases are \Baseline"
and \SNC01". The parameters shown in the se-
lection area below the tabs change to those ap-
propriate for the chosen database. Once the pa-
rameters are selected, the user can choose one or
more of the check-buttons on the top right side
of Fig. 13 to interrogate the grid and solution, or
to view the load histories. Selecting the \grid"
or \solution" check-button and pressing the \Get
and Plot File" button results in the retrieval of
the appropriate �les from the database followed
by an interactive ow visualization session. To
aid the analysis, pre-loaded ow�eld visualiza-
tions are available, and can either be printed to
hardcopy or stored in the remote database. A
sample of these \thumbnail" composite ow�eld
visualizations is shown in Fig. 14.
The GUI tool can take arbitrary slices through

Figure 13: Database post-processing graphical
user interface.

Figure 14: Sample of pre-loaded \thumbnail"
composite ow visualizations. Color variations
represent temperature.
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Figure 15: Sample of post-processing time-
dependent load histories.

the data, including constant planes, vectors, or
arbitrary isolated points in the database. The
main interactive features of the tool are graphi-
cal plotting of the load histories�, and 3-D visu-
alization tools. An example of the load history
post-processing is shown in Fig. 15. Arbitrary en-
tries in the database can be selected and are au-
tomatically retrieved from the remote database
and plotted in a third-party application. The
labels and legends are also automatically gener-
ated. Additional curves can be added to the plot
from the database as desired.

6 Summary

A method of automating the generation of
a time-dependent, Navier-Stokes static S&C
database for the Harrier aircraft in ground e�ect
has been outlined. Lightweight reusable compo-
nents were created which allow di�erent facets of
the CFD simulation process to utilize a consis-
tent interface to a remote database. These com-
ponents also allow changes and customizations to
easily be facilitated into the solution process to
enhance performance without relying upon third-
party support. An analysis of the multi-level
parallel solver OVERFLOW-MLPwas presented,
and the results indicate that it is eÆcient to uti-
lize large numbers of processors (� 50) even with
a grid system with a relatively small number of
cells (� 106).
Two computational databases were generated

using the methods described in this paper; one
in Spring 1999 using a simpli�ed Harrier geome-
try, and one in the Fall of 2000 using the geom-
etry described here in Sec. 3. Table 1 contains
a listing of the time required to obtain a single

�All of the computed solutions are time-dependent,
hence the time-history of the load variation must be plot-
ted, not just a steady-state value.

time-dependent solution to 12 sec. of real time.
This represents a worst-case scenario, and many
of the computed cases require less time. It's seen
that both the wallclock time to solution, and the
amount of computational resources utilized were
both reduced for the second database generation,
i.e. the wallclock improvements are not just due
to the use of more processors. The improvements
in performance are due to many sources, however
with the infrastructure now in place that allows
the generation of time-dependent databases to be
automated, improvements to the process can be
easily implemented. In follow-on work that again
utilizes the tools outlined in this paper, Pandya
et al. [19] have extended this to improve the per-
formance by almost an order of magnitude fur-
ther in wallclock time.

Database Wallclock time Compute Time
Spring '99 30 days 5700 CPU-hours
Fall '00 8 days 3000 CPU-hours

Table 1: Time-to-solution for a worst-case, time-
dependent Harrier computation.
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